
C. Leggett 2020-11-05
1/20

FastCaloSim Status

Charles Leggett

HEP-CCE/PPS All Hands

November 5 2020

C. Leggett 2020-11-05
2/20

Quick Motivation: Why FastCaloSim?
► ATLAS needs lots of simulation

• Simulation is paramount for SM and background modeling
in most analyses, as well as general detector and upgrade
studies

• A significant issue in Run-2 was the lack of MC-based
statistics, and will only worsen in Run-3 and beyond without
faster production

► A very large fraction of the simulation’s
computational budget is spent by the
LAr Calorimeter
• Parametrized simulation can speed things

up enormously: FastCaloSim

► FastCaloSim is small, self contained, few
dependencies, already had a CUDA port

C. Leggett 2020-11-05
3/20

CPU Code Profiling
► LAr Calorimeter has massive inherent parallelism – lots of independent cells and

associated tasks.

► Profiling studies identified
likely hotspots that are
paralellizable

► CUDA kernels created
to run these parts on the
GPU
• modified data structures
• reimplement Geometry

and parametrization
tables for GPU – no
STL allowed

• 3 kernels:
• reinit memory
• main simulation
• reduction

PERFORMANCE PROFILING 6

➢ TFCSLateralShapeParametrizationHitChain::simulate() is the
most significant routine except I/O (~30%).

➢ TFCSLateralShapeParametrizationHitChain::simulate() The
running time scales with the number of events.

➢ TFCSLateralShapeParametrizationHitChain::simulate() is our
target to parallelize/port to GPUs.

I/O routines
Timing for 1000 events

L
o

o
p

 o
ve

r
h

it
s

C. Leggett 2020-11-05
4/20

GPU Validation
► CUDA has a very good random number generator (cuRAND)

• FCS needs lots of random numbers
• 3 per hit x ~5k hits per event

• much faster than generating on CPU
• but can’t do bitwise comparisons

with CPU – only statistical

• after looking at lots of histograms,
results look statistically equivalent

► If we sacrifice speed, we can generate random number on CPU, and transfer them to
GPU, using these for all calculations on GPU
• compared the results of 62 million hits in the Electron 64 GeV run
• found only 2 hits calculations that ended up in different calorimeter cell

• slightly different float rounding policies on CPU/GPU

• if we use double precision variables for certain calculations, difference vanishes

► Confident that GPU code does the same thing as CPU

RESULTS VALIDATION 10

CPU GPU

‣ Use of different random numbers on CPU and GPU: results not bit-wise reproducible
‣ Statistically equivalent
‣ Looking at ways for better reproducibility

C. Leggett 2020-11-05
5/20

CUDA Performance Studies
► I/O to read/unpack

parametrization files is
expensive: ~15s of 30s

► Execution only offloaded
if >500 hits, otherwise
CPU is faster

► GPU kernels very short
• launch latency limited

► Better performance if
group work between
multiple events to give
more work to GPU

e
 E

=6
5.

5M
eV

 η
=0

.0

e
 E

=6
5.

5M
eV

 η
=0

.2

e
 E

=6
5.

5M
eV

 η
=2

.2

e
 E

=6
5.

5M
eV

 η
=3

.4

ɣ
 E

=3
2.

8M
eV

 η
=0

.2

ɣ
 E

=6
5.

5M
eV

 η
=0

.2

π
 E

=1
6.

4M
eV

 η
=0

.2

π
 E

=3
2.

8M
eV

 η
=0

.2

π
 E

=6
5.

5M
eV

 η
=0

.2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

FastCaloSim Timing

10000 Events

Total CPU

Total GPU

Total GPUg

Event Loop CPU

Event Loop GPU

Event Loop GPUg

T
im

e
 /s

C. Leggett 2020-11-05
6/20

e
 E

=65
.5

M
eV

 η
=0.

0

e
 E

=65
.5

M
eV

 η
=0.

2

e
 E

=65
.5

M
eV

 η
=2.

2

e
 E

=65
.5

M
eV

 η
=3

.4

ɣ
 E

=32
.8

M
eV

 η
=0.

2

ɣ
 E

=65
.5

M
eV

 η
=0.

2

π E
=16

.4
M

eV
 η

=0.
2

π E
=32

.8
M

eV
 η

=0.
2

π E
=65

.5
M

eV
 η

=0.
2

0.00

5.00

10.00

15.00

20.00

25.00

FastCaloSim Speedup Over CPU (Event Loop)

10000 Events Event Loop GPU

Event Loop GPUg

S
p

ee
d

u
p

 o
v

e
r

C
P

U
 e

v
e

n
t l

o
o

p
 t

im
e

CUDA Performance Studies
► I/O to read/unpack

parametrization files is
expensive: ~15s of 30s

► Execution only offloaded
if >500 hits, otherwise
CPU is faster

► GPU kernels very short
• launch latency limited

► Better performance if
group work between
multiple events to give
more work to GPU

C. Leggett 2020-11-05
7/20

CUDA Performance Studies
► GPU performs better for higher energy particles (more hits/work)

► Grouped work
not as effective
since regular GPU
is already performant
• need to send

extra information
to GPU when work
is grouped
between events

e
 E

=1
Te

V
 η

=0
.2

e
 E

=2
T

eV
 η

=0
.2

e
 E

=4
Te

V
 η

=0
.2

ɣ
 E

=1
Te

V
 η

=0
.2

ɣ
 E

=2
Te

V
 η

=0
.2

ɣ
 E

=4
Te

V
 η

=0
.2

π
 E

=1
Te

V
 η

=0
.2

π
 E

=2
Te

V
 η

=0
.2

0

10

20

30

40

50

60

70

FastCaloSim Speedup for Higher Particle Energies

GPU Event Loop

GPUg Event Loop

S
p

e
ed

u
p

 o
v

e
r

C
P

U

C. Leggett 2020-11-05
8/20

GPU Usage With CUDA
► In general, GPU resources are not well used

• kernels are very short, dominated by launch latency overheads
• work size is small, under-utilizing available GPU cores

► Can run multiple concurrent process all
sharing one (or more) GPUs
• use nvidia-cuda-mps-server to share 2

P100s between up to 32 processes

• curve is mostly flat – nowhere near maxing
out GPU resources

• we can do the same with a V100 w/ 48GB
and run 62 processes with little impact
on performance

0 5 10 15 20 25 30 35
0

1

2

3

4
FastCaloSim Scaling With Multiple Concurrent Processes

cpu total
cpu event loop
2 gpu total
2 gpu event loop
2 gpus total group
2 gpus event loop group

Number of processes

N
o

rm
a

liz
e

d
 T

im
e

 to
 1

 P
ro

c
es

s

C. Leggett 2020-11-05
9/20

Porting to Kokkos
► Build infrastructure

• Kokkos has decent CMake integration
• requires separate binaries for each device backend (CUDA, HIP, Intel) or host parallel

(pThread, OpenMP)
• In theory you can run both device/host parallel backends in same code, but then you can’t

use the default execution space for your kernels: have to say which go where

► Shared libraries not compatible with device symbol relocation
• if you want shared libs, all symbols in a kernel must be visible to one compilation unit

• wrap kernels in one file that does a bunch of #include
• needed to do some function/file refactoring to make it all work

► CUDA backend interoperable with pure CUDA
• can call CUDA functions from Kokkos kernels
• makes incremental porting and validation much easier

► All offloaded data structures need to be converted to Kokkos Views

C. Leggett 2020-11-05
10/20

Kokkos: Porting Data Structures
► Kokkos Views can either allocate host/device memory, or wrap existing pointers

• makes incremental porting of cuMalloc memory easier

► Supports both row and column major ordering

► Jagged multidimensional arrays not well supported by Kokkos Views
• Views of Views not meant for this
• lots of extra boilerplate needed to make work
• easier to flatten to 1D array, or pad to 2D

► Requires explicit Host ↔ Device memory migration
• need to create Views on host to hold copied information

► Non-zero overhead to using Views
• both in the extra steps for creating the host/device Views, and operations on them

C. Leggett 2020-11-05
11/20

Kokkos: Porting Kernel Code
► While syntax is different from CUDA, concepts are the same

• functions → lambdas
• parallel_for, parallel_scan, reductions

• some CUDA features not available in Kokkos (yet?). See Patatrack

• atomics (but not between devices or host/device parallel execution spaces)

► Most FCS functions identical between CUDA / Kokkos
• use a single file with #ifdef to select attributes to share as much code between version

#ifdef USE_KOKKOS
include <Kokkos_Core.hpp>
include <Kokkos_Random.hpp>
define __DEVICE__ KOKKOS_INLINE_FUNCTION
#else
define __DEVICE__ __device__
#endif

C. Leggett 2020-11-05
12/20

Kokkos: Performance
► Exercise various backends, compare to original CUDA

• CUDA reference is NVidia 2080
• HIP on AMD GPU (Vega56)
• Intel XeLP GPU via OpenMP target

offload, but I can’t show that…
• pThread / OpenMP best performance

with ~15 threads/procs
• HIP2

 is a pure HIP port, run on
AMD GPU

► Kokkos does not handle GPU
memory initialization efficiently

► Kokkos kernel launch penalties
worse than CUDA

► AMD Vega56 has horrible launch latencies
► HIP/AMD uses the CPU a lot more than CUDA when

executing kernels on GPU
► Code was ported from CUDA, not rewritten

• likely considerable optimization possible

CPU Freq CUDA

Kokkos

HIP2CUDA HIP

2200 MHz 5.6 9.4 152 88

3700 MHz 3.4 5.3 60 30

kernel launch latencies / µs

reset simulate reduce copy d→h event loop
0

5

10

15

20

25

30

35

40

FastCaloSim Kokkos Kernel Timing Relative To CUDA

CUDA

HIP

Serial

pThread

OpenMP

HIP²

Original CPU

S
lo

w
d

o
w

n
 R

el
at

iv
e

to
 P

u
re

 C
U

D
A

C. Leggett 2020-11-05
13/20

SYCL Build Infrastructure
► Multiple different flavours of dpcpp/SYCL

• Intel official “beta” releases
• Intel closed codedrops at jlse for A21 development

• OpenCL and LevelZero backends

• Intel/llvm git
• CUDA backend available (selectable at compile time)
• RNG issues (See Vince’s talk later)

• Codeplay
• hipSYCL (AMD), triSYCL

► In theory SYCL is single source, compile once, run anywhere, select backend at
runtime
• in practice need to build with different compilers to target different hardware
• maybe there will be convergence in the future

► Integrates well with CMake

C. Leggett 2020-11-05
14/20

SYCL Code Modifications

C. Leggett 2020-11-05
15/20

SYCL Performance
► Timing tests on an integrated Intel GPU (Iris Pro P580) w/ public dpcpp beta10 release
► d→h transfer speeds are RAM→RAM so don’t count

reset simulate reduce copy d→h event loop
0

5

10

15

20

25

30

35

40

FastCaloSim Kernel Timing Relative To CUDA

Kokkos/CUDA

Kokkos/HIP

Kokkos/Serial

Kokkos/pThread

KK/OpenMP

HIP²

SYCL/CPU

SYCL/iGPU

Original CPU

S
lo

w
d

o
w

n
 R

e
la

tiv
e

to
 P

u
re

 C
U

D
A

C. Leggett 2020-11-05
16/20

Lessons Learned
► Build configuration requirements may be challenging

• Kokkos shared libs vs relocatable device code: code reorganization
• dpcpp changing to (too?) rapidly, things that worked last week may not work today

► Separate binaries for different device backends
• Kokkos explicitly, SYCL because you need different compiler flavours
• implications for production code distribution

► CUDA→ Portability Layer concepts translate well
• Views / Buffers come with overhead / penalties

► Launch latencies for tiny kernels kills performance on all platforms
• Portability layers make it worse
• AMD is really bad. Will RDNA2 / CDNA2 / Instinct improve things?

► High performance single source CPU/GPU may be a pipe dream

► GPU very underutilized in FastCaloSim
• grouping data between events helps: may require significant refactoring of frameworks
• a single GPU can be shared between multiple processes

C. Leggett 2020-11-05
17/20

What Recommendations Would I Make Today?
► Caveats:

• non-NVidia/CUDA market very fast moving target

► Are you buying hardware for you trigger farm today?
• NVidia / CUDA

► Is short term performance the main metric?
• NVidia / CUDA

► Is short term performance important, but not ultimate, and want some portability?
• Kokkos

► Do you want to target mainly Intel and NVidia GPU hardware?
• SYCL

► Long term portability on all platforms
• Kokkos

► Non-NVidia software/hardware changing very rapidly: these answers may be
different in six months.

C. Leggett 2020-11-05
18/20

What Comes Next
► Other Parallel Portability Layers:

• OpenMP / OpenACC
• Alpaka
• Raja - Will we learn anything that Kokkos didn’t teach us?

► Other backends
• SYCL w/ CUDA on NVidia
• Intel discrete GPU (Arctic Sound/XeHP and Ponte Vecchio/XeHPC via Kokkos and SYCL)

• we can already run FCS/SYCL on XeLP, XeHP nodes at jlse

• AMD RDNA2 / CDNA2

► Better understanding/evaluation/reporting of metrics
• in coordination with other testbeds

► Update FastCaloSim to reflect what ATLAS is currently using
• more realistic particle scenarios
• integrate into ATLAS repositories

C. Leggett 2020-11-05
19/20

Acknowledgments
► Really want to thank all the people who contributed to this project

► CUDA port:
Zhihua Dong (BNL)
Meifeng Lin (BNL)
Kwangmin Yu (BNL)

► Kokkos port:
Zhihua Dong (LBL)
Charles Leggett (LBL)

► SYCL port:
Charles Leggett (LBL)
Vincent Pascuzzi (LBL)

► Physics Validation:
Doug Benjamin (ANL)
Tadej Novak (DESY)

C. Leggett 2020-11-05
20/20

f in

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

